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The PDF Projection Theorem and the
Class-Specific Method

Paul M. Baggenstos$lember, IEEE

Abstract—in this paper, we present the theoretical foundation results in a raw data likelihood function which is guaranteed by
for optimal classification using class-specific features and provide the theorem to be a PDF on the raw data space. Examples of the

examples of its use. A new probability density function (PDF) pro- - jethod involving commonly used autoregressive and cepstrum
jection theorem makes it possible to project probability density .
features are provided.

functions from a low-dimensional feature space back to the raw .
data space. AnM-ary classifier is constructed by estimating the A few words about the chronology of development are in
PDFs of class-specific features, then transforming each PDF back order. This paper is based on previous work in class-specific
to the raw data space where they can be fairly compared. Although features by the author and by Prof. S. Kay at the University of
statistical sufficiency is not a requirement, the classifier thus con- Rhode Island. The first two papers on the subject [1], [2] de-
structed will become equivalent to the optimal Bayes classifier if . L oo .
the features meet sufficiency requirements individually for each scribe the original form of the class-specific me_thod, which was
class. This classifier is completely modular and avoids the dimen- based on a common fixed reference hypothesis and the proper-
sionality curse associated with large complex problems. By recur- ties of sufficient statistics. Although the present method is based
sive application of the projection theorem, it is possible to analyze on this previous work, we say little about it in this paper. This is
complex signal processing chains. We apply the method to feature po.-5,;5e the present work is best understood from the viewpoint
sets including linear functions of independent random variables, S . .
cepstrum, and MEL cepstrum. In addition, we demonstrate how Of_ PDF _pr_OJeCtlon_, gnd it WO_UId confuse the r_eaders to begin
it is possible to automate the feature and model selection processzth sufficient statistics. The interested reader is enCOUraged to
by direct comparison of log-likelihood values on the common raw examine this previous work, especially [2].
data domain. In Section |, we review classical Bayesian classification and
Index Terms—Bayesian classification, class-dependent features, discuss the dimensionality problem. In Section II, we introduce
classification, class-specific features, hidden Markov models, max- the PDF projection theorem (PPT) and the associated chain rule.
imum likelihood estimation, pattern classification, PDF estimation, In Section Ill, we discuss various methods of calculating the
probability density function. ! - .
PPT correction term. In Section IV, we discuss how to apply the
PPT to classification. In Section V, we apply the method to fea-
|. INTRODUCTION ture transformations involving linear functions of independent
random variables (RVs). In Section VI, we apply the method

) . _ to cepstrum and MEL cepstrum. In Section VII, we present a
N this paper, we introduce a theorem that can be applied:thod of automatic feature selection.

any statistical approach, which makes use of likelihood com-
parisons, such as detection, classification, and statistical m
eling. The theorem allows likelihood comparisons to be ma%
in the common raw data domain while the difficult task of prob-
ability density function (PDF) estimation can be made in class The so-called)M-ary classification problem is that of as-
(or state) dependent low-dimensional feature spaces. Beca%iéing a multidimensional sample of datac R to one
each feature set can be designed without regard to other claged/ classes. The statistical hypothesis that classtrue is
(or states), it can be of much lower dimension than a commégnoted byi/;, 1 < j < M. The statistical characterization of
feature set that must account for all classes, effectively avoidikg!nder each of thé/ hypotheses is described completely by
the curse of dimensionality. The transformation of feature PD#e PDFs, which are writtep(x|H;), 1 < j < M. Classical
to the raw data domain, which we term “PDF projection,” igheory as applied to the problem results in the so-called Bayes
accomplished by deriving a correction term that amounts tockssifier, which simplifies to the Neyman—Pearson rule for
generalized Jacobian of the feature transformation. This corr€guiprobable prior probabilities
tion term depends only upon the feature transformation and a
hand-picked class (or state) dependent statistical reference hy-
pothesis. When combined with the feature likelihood value, it

A. Overview and Outline

"Classical Classification Theory and the Dimensionality
oblem

j* = arg maxp(x| H,). (1)
J

. . , . Because this classifier attains the minimum probability of error
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information-bearing features= T'(x), then recasting the clas- 5) Support vectors [8] are a relatively new approach that is

sification problem in terms at: based on finding a linear decision function between every
pair of classes.
j* = arg mep(ZIHj) (2)  As evidenced by the various approaches, there is a strong moti-

vation for using class-specific features. Unfortunately, classical
This leads to a fundamental tradeoff: whether to discard featuthgory as it stands requires operating in a common feature space
in an attempt to reduce the dimension to something managed fails to provide any guidance for a suitable class-specific ar-
able or to include them and suffer the problems associated withitecture. In this paper, we present an extension to the classical
estimating a PDF at high dimension. Unfortunately, there malyeory that provides for an optimal architecture using class-spe-
be no acceptable compromise. Virtually all methods which atific features.
tempt to find decision boundaries on a high-dimensional space
are subject to this tradeoff or “curse” of dimensionality. For this [I. PDF PROJECTIONTHEOREM

reason, many researchers have explored the possibility of using[ is well known how to write the PDF of from the PDE of

class-spec!ﬂg featgres [.3]_[9]' o : z \{vhen the transformation is 1:1. This is the change of variables
The basic idea in using class-specific features is to eXtr?ﬁeorem from basic probability. Let= 7'(x), wherel'(x) is an

M class- ific f r =Ti(x), 1< j< M, . ; . X L 4 .
whgrziie?%?r%ezsﬁ)?%feezec? featu:e(xs)ét is sr?laljl and tﬁenﬂ%\gert'ble and differentiable multidimensional transformation.

. . . en
arrive at a decision rule based only upon functions of the lower
dimensional features. Unfortunately, the classifier modeled on pa(x) = [J(x)[p=(T'(x)) (4)

the Neyman—Pearson rule
where|J(x)| is the determinant of the Jacobian matrix of the

J* = argmax p(z;|H;) (3) transformation
J
azi

J

is invalid because comparisons of densities on different feature Jij =

spaces are meaningless. One of the first approaches that comes
to mind is to computes for each class a likelihood ratio againdhat we seek is a generalization of (4), which is valid for
a common hypothesis composed of “all other classes.” Whileany-to-1 transformations. Define
this seems beneficial on the surface, there is no theoretical di- o
mensionality reduction since for each likelihood ratio to be a P(T,p=) = {pe(x) : 2= T(x) andz ~ p-(2)}
sufficient statistic, “all features” must be included when testingat is,P(T, p.) is the set of PDFg, (x), which, throughl'(x),
each class against a hypothesis that includes “all other classggrierate PDIp. (z) onz. If T( ) is many-to-oneP (T, p.) will
A number of other approaches have emerged in recent yeargdatain more than one member. Therefore, it is impossible to
arrive at meaningful decision rules. Each method makes a strangquely determing,, (x) from T'( ) andp.(z). We can, how-
assumption (such as that the classes fall into linear subspaeggy, find a particular solution if we constraig(x). In order to
that limits the applicability of the method or else useshoc apply the constraint, it is necessary to make use of a reference
method of combining the likelihoods of the various feature setsypothesisH, for which we know the PDF of botk andz. If
1) A method used in speech recognition [3] uses phone-spee constrair.. (x) such that for every transform pdix, z) we
cific features. While, at first, this method appears to udegve
class-specific features, it is actually using the same fea-
= > P2(x)  _ p:(2)
tures extracted from the raw data but applyoing different pu(x|Ho) _ p-(z|Ho) (5)
models to the time evolution of these features. * 0 : 0
2) A method of image recognition [10] uses class-specify that the likelihood ratio (with respect ) is the same in
features to detect various image “fragments.” The meth&®th the raw data and feature domains, we arrive at a satisfac-
uses a nonprobabilistic means of combining fragments @y answer. We cannot offer a justification for this constraint
form an image. other than it is a means of arriving at an answer; however, we
3) A method has been proposed that tests all pairs of clas#é% soon show that this constraint produces desirable proper-
[4]. To be exhaustive, this method has a complexity dfes. The particular form op.(x) is uniquely defined by the
O(M?) different tests and may be prohibitive for largeconstraint itself, namely
M. A hierarchical approach has been proposed based on
. . . _ Pz (X|H0)
a binary tree of tests [5]. Implementation of the binary Pe(X) = ———~
tree requires initi I ) : p=(2|Ho)
quires initial classification into meta-classes, which
is an approach that is suboptimal because it makes hditeorem 1 states that not onlyps(x) a PDF but that it is a
decisions based on limited information. member of P(T, p.).
Methods based on linear subspaces [6], [7] are popular beTheorem 1—PDF Projection Theorenhet H, be some
cause they use the powerful tool of linear subspace anfiked reference hypothesis with known PRE(x|Hj). Let X
ysis. These methods can perform well in certain applicae the region of support ¢f,.(x|Hy). In other words Y’ is the
tions but are severely limited to problems where when thset of all pointsx, wherep,.(x|Hy) > 0. Letz = T'(x) be a
classes are separable by linear processing. many-to-one transformation. Lef be the image oft’ under

p-(z); wherez = T'(x). (6)

4

~
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the transformatior?'(x). Let the PDF ofz whenx is drawn isavalid ML approach and can be used for model selection (with
from p,(x|Hy) exist and be denoted hy.(z|H,). It follows appropriate data cross-validation).
thatp.(z|Hy) > 0 forallz € Z. Now, letp.(z) be any PDF  Example 1: In this simple example, we demonstrate the ap-
with the same region of suppa#. Then, the function (6) is a plicability of Theorem 1. We consider the case of independent
PDF onX, and thus Gaussian RV’s and two hypotheses concerning the mean. Let
x = [z1...zyN]". Let the feature transformation be
/ pz(x)dz = 1.
JxeX

K
z=T(x) = Zazl
Furthermorep..(x) is a member oP (T, p.,). i=1

Proof: These assertions are proved in [11]. wherel < K < N. Let&(x:) = 0 underHy and&(z;) = 1
underH,, where&( ) is the expectation operator. Becaugg

and H, are hypotheses concerning the mean of Gaussian RV'’s

The theorem shows that, provided we know the PDF undgjih fixed variance is a sufficient statistic for the mean when

some reference hypothesi& at both the input and output of i — . The Gaussian PDF of underH, may be written
transformationl’(x), if we are given an arbitrary PDF.(z)

defined onz, we can immediately find a PDF, (x) defined 2N/ 1 & )

onx that generates. (z). Although it is interesting that,. (x) Pa(x|Ho) = (2m07) CXPY 7oz 2T (-
generate®,(z), there are an infinite number of them, and it is =1

not yet clear thap,(x) is the best choice. However, supposeinder H,, » will be Gaussian zero-mean with varianier2,
we would like to usep,(x) as an approximation to the PDFand thus

p=(x|H1). Let this approximation be

Hy)
5. (x| H a P=(X|Ho 5.
P ) = ) P

A. Usefulness and Optimality Conditions of the Theorem

p-(z|Hp) = (27TK0'2)1/26XI){— Kl 222}.

(z|Hy) wherez = T(x).  (7) 2Ko
We letp.(z) be the Gaussian PDF

From Theorem 1, we see that (7) is a PDF. Furthermofe(st) 1

is a sufficient statistic fofd; versusHy, then asp. (z|Hy) — p-(z|Hy) = (2rKo?)™ % exp {— T (z — K)2} .

p-(z|H1), we have 7

By the projection theorem

h(X|H1) — po(x|H1).
P (X|Hy) — pr(x[H)) (x| Ho)

This is immediately seen from the well-known property of the pa(x) = pz(z|H0)pz(Z|H1>'
likelihood ratio, which states that if'(x) is sufficient for H; Thus
versusH,
pa(x|Hy) _ p-(2|Hn) ®) pa(x) = (2m0%) "N (21K o?) '/ (2r K o®) /2
Note that for a giverH{;, the choice off'(x) andH are coupled 7 L= KK
so that they must be chosjaintly. In addition, note thatthe suf-  p,.(x) = (2r0?)~N/?
ficiency condition is required for optimality, but is not necessary 1 [ 2 2
for 7 to be a valid PDF. Here, we can see the importance of the - exp {——2 Z P-4+ -2+ K }
. . . 202 |4 K K
theorem. The theorem, in effect, provides a means of creating Li=1

PDF approximations on the high-dimensional input data space, (x) = (2ro?) /2
without dimensionality penalty using low-dimensional feature [
PDFs and provides a way to optimize the approximation by con- exp {— — Z 2?2 - 224+ K

}

2
trolling both the reference hypothedig as well as the features 20 Li=1
themselves. This is the remarkable property of Theorem 1: that = (27m2)—N/2
the resulting function remains a PDF whether or not the features L& N
are sufficient statistics. Since sufficiency means optimality of cexp{ —— Z(x, —1)%+ Z 22
g f . . ! 202 v g
the classifier, approximate sufficiency means PDF approxima- Li=1 i=K+1

tion and approximate optimality.

Theorem 1 allows maximum likelihood (ML) methods to bavhere we have made the substitution= Y7, z;. It is clear
used in the raw data space to optimize the accuracy of the #pat the resultis a Gaussian PDF with mean= 1 for 1 <: <
proximation overl’ and H, as well asf. Let j.(z|H;) be pa- K andu; = 0for K +1 <4 < N. Note also that it is a PDF,
rameterized by the parameterThen, the maximization regardless of< (that is to say the sufficiency of). It is also

clear that the PDlp,.(x) generates the PDF: (z). In addition,
ax {pI(X|HO)ﬁZ(z|H1;0), 7= T(x)} (7a) note that ifK' = N, thenp,(x) = p.(x|H1), as predicted by
07,1, | p-(z|Ho) the theory.
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B. Data-Dependent Reference Hypothesis In our example, the maximum of the numerator clearly hap-
pens at? = z because is the maximum likelihood estimator
of o2. We will explore the relationship of this method to asymp-
totic ML theory in a later section. To reflect the possible depen-
dence ofH, onz, we adopt the notatiof/y(z). Thus

We now mention a useful property of (7). LHL be aregion
of sufficiency(ROS) ofz, which is defined as a set of all hy-
potheses such that for every pair of hypothddgs Hoy, € H.,
we have

Pz (x|Hoa) _ p=(z[Hoa) Pe(x|Hy) = pz(x|Ho(2))

pa(x|Hop)  p-(2|Hop) p=(2|Ho(2))

An ROS may be thought of as a family of PDFs traced out by thige existence af on the right side of the conditioning operator
parameters of a PDF, whezes a sufficient statistic for the pa- | is admittedly a very bad use of notation but is done for sim-
rameters. The ROS may or may not be unique. For example, fiity. The meaning of: can be understood using the following
ROS for a sample mean statistic could be a family of Gaussighaginary situation. Imagine that we are handed a data sample
PDFs with variance 1 traced out by the mean parameter. Anotierand we evaluate (7) for a particular hypotheHis € H..
ROS would be produced by a different variance. THeftinc-  Qut of curiosity, we try it again for a different hypothesis of
tion” H|, € 'H.. We find that no matter whiclil, € H. we use, the
po(x|Ho)  pa(x|Hy) result is the same. We notice, however, that foignthat pro-
= duces larger values of, (x|Hy(z)) andp.(z|Hy(z)), the re-
p=(T(x)|Ho)  p-(z|Ho) ; ; ; :
quirement for numerical accuracy is less stringent. It may re-
is independent off, as long ag{, remains within ROS.. quire fewer terms in a polynomial expansion or else fewer bits
Defining the ROS should in no way be interpreted as a suffif numerical accuracy. Now, we are handed a new sampte of
ciency requirement faz. All statisticsz have an ROS that may but this time, having learned our lesson, we immediately choose
or may not include; (it does only in the ideal case). Definingthe Hy € H.. that maximizes,.(x|Ho(z)). If we do this every
H. is used only in determining the allowable range of referentine, we realize thall, is now a function of. The dependence,
hypotheses when using a data-dependent reference hypothdglgever, carries no statistical meaning and only has a numerical
For example, lez be the sample variance®f Let Hy(o%) be  interpretation.
the hypothesis that is a set of N independent identically dis-  In many problems?. is not easily found, and we must be
tributed zero-mean Gaussian samples with variaric€learly, satisfied withapproximatesufficiency. In this case, there is a
an ROS forz is the set of all PDFs traced out by. We have ~ weak dependence of(x, T, Hy) upon H,. This dependence
is generally unpredictable unless, as we have suggedigd)
1 & 2} is always chosen to maximize the numerator PDF. Then, the

p.(z|H1), wherez = T'(x). (9)

J(x,T, Hy) =

202 Ti behavior of.J(x, T, Hy) is somewhat predictable. Because the

n=t numerator is always maximized, the result is a positive bias.
and, sincez is ax2(N) random variable (scaled by N) This positive_bia_s is most notable when there is a good match to
the data, which is a desirable feature.

p(X|H0(O’2)) = (2%02)_N/2 exp {—

p(z|Ho(o%))

202

N N (&) N/2-1 o < zN) C. Asymptotic ML Theory as a Special Case of the PDF
ﬂ) 2 p
2

= W . Projection Theorem

We have stated that when we use a data-dependent refer-

It is easily verified that the contribution of? is canceled in the ence hypothesis, we prefer to choose the reference hypothesis
J-function ratio. such that the numerator of thiefunction is a maximum. Since

Because/(x, 1, Ho(c?)) is independent of?, it is possible we often have parametric forms for the PDFs, this amounts to
to makecs? a function of the data itself, changing it with eacHinding the ML estimates of the parameters. If there are a small
input sample. In the example above, sinds the sample vari- number of featuresall of the features are ML estimators for
ance, we could let the assumed variance uiifiedepend oz parameters of the PDF, and there is sufficient data to guarantee
according tor? = z. that the ML estimators fall in the asymptotic (large data) region,

However, if J(x, T, Hy(0?)) is independent of2, one may then the data-dependent hypothesis approach is equivalent to an
question what purpose does it serve to vafy The reason is existing approach based on classical asymptotic ML theory. We
purely numerical. Note that in general, we do not have an anaill derive the well-known asymptotic result using (9).
lytic form for the J-function but instead have separate numer- Two well-known results from asymptotic theory [12] are the
ator and denominator terms. Often, computitigs, 7', Ho(c2))  following.

can pose some tricky numerical problems, particularyahdz 1) Subject to certain regularity conditions (large amount of
are in the tails of the respective PDFs. Therefore, ourapproachis  data, a PDF that depends on a finite number of parame-
to positionH to maximize the numerator PDF (which simulta- ters and is differentiable, etc.), the PP x; 6*) may be

neously maximizes the denominator). Another reason to do this  approximated by
is to allow PDF approximations to be used in the denominator

that are not valid in the tails, such as the central limit theorem N N 1 . PR
(CLT). D (X;60%) ~ po(x;6) exp {—5(0 —0)'1(6)(0" — 0)} (10)
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where@* is an arbitrary value of the parametéris the [ H N
maximum likelihood estimate (MLE) @, andI(#) is the Y
Fisher’s information matriXFIM) [12]. The components Hw

of the FIM for PDF parameter;,, §; are given by

) o) ) (i)

82111]39: x70
Iy, 6, 0)=-— <W> '

The approximation is valid only fo#* in the vicinity of
the MLE (and the true value).
2) The MLE® is approximately Gaussian with mean equal

: 1 Fig. 1. Required embedding of hypotheses for chain-rule processor
to the true valud and covariance equal Lo (0) or corresponding to (13) and (14). The conditiih € . is not necessary for a

valid PDF but is desirable for processor optimality.

. R 1 . .
0;0) ~ (2r)~T/2|1(8)|Y/% e {——9—0'10 9—0}
Po(6;8) = (2m) [L(O)] exp 2( VIO)( ()11) The recursive use of (7) gives
where P is the dimension of. Note that we us# in p=(X|Ho(y)) py(y|Ho(W))

_evaluating the FIM ij11place d@, which is unknown. This pe(x|Hy) = 2y (Y1 Ho(¥)) po(WIH)(W))

is allowed becausk *(6) has a weak dependence én

The approximation is valid only fof in the vicinity of pw(W|H{ ()

the MLE. p:(z|H{ (z))

To apply (9),0 takes the place of, and Hy(z) is the hy-

pothesis thaf is the true value of). We substitute (10) for wherey = Ti(x), w = Ty(y), z = T3(w), and Ho(y),
p(x|Ho(z)) and (11) forp. (z|Hy(z)). Under the stated con- Hy(w), H'(z) are reference hypotheses (possibly data-depen-
ditions, the exponential terms in approximations (10), and (1d¥nt) suited to each stage in the processing chain. By defining
become 1. Using these approximations, we arrive at the J-functions of each stage, we may write the above as

p-(z|Hy) (14)

. B pa(x;0) < a pa(x|Hy) = J(x, T, Ho(y)) I (y, T, Hy(W))
Pa(x[Hy) = (%)_P/Q|I(9>|1/2p6(9|H1) (12)

J(w, T3, H)(2)) p.(z|Hy). (15
which agrees with the PDF approximation from asymptotic (w, T, Hy (2)) p+(=lHy). ~ (19)

theory [13], [14]. _ _There is a special embedded relationship between the hy-
To compare (9) and (12), we note that for both, there is an'rBE)theses Let{,, H,,, and H. be the ROSs of, w, and
. Y w z ! J

plied sufficiency requirement far andé, respectively. Specif- z, respectively. Then, we hav. C M, C H,. If we use

. . . - 1 . Ll z w yr

ically, Ho(z) must remain in the ROS of, whereasd must | 3 ianje reference hypotheses, we also must &) € 7.,

be asymptotically sufficient fof. However, (9) is more gen- Hl(w) € M., and Ho(y) € H,. This embedding of the
eral since (12) is valid only wheall of the features are ML h;potheses is illustrated in Fig. 1 The conditish €
estimators and only holds asymptotically for large data recor@lSie jgeal situation and is not necessary to produce a valid
with the implication tha tends to Gaussian, whereas (9) has e The factorization (14), together with the embedding of

such implication. This is particularly important in upstream Prone hypotheses, we call the chain-rule processor (CRP).
cessing, where there has not been significant data reduction, and

asymptotic results do not apply. Using (9), we can make simple
adjustments to the reference hypothesis to match the data better
and avoid the PDF tails (such as controlling variance), where weWWe now summarize the various methods we have discussed
are certain that we remain in the ROSzofAs an aside, we note for computing the/-function.

that (7) with a fixed reference hypothesis is even more general _ .

since there is no implied sufficiency requirement for A. Fixed Reference Hypothesis

Ill. TYPES OF.J-FUNCTIONS

For modules using a fixed reference hypothesis, care must
D. Chain Rule be taken in calculation of thé-function because the data is

e peem . . more often than not in the tails of the PDF. For fixed reference
In many cases, it is difficult to derive thé-function for an L
hgpotheses, the function is

entire processing chain. On the other hand, it may be quite easy
to do it for one stage of processing at a time. In this case, the (x|Ho)
chain rule can be used to good advantage. The chain rule is just J(x,T, Hy) = Pe\X\T0)
the recursive application of the PDF projection theorem. For p=(z|Ho)

example, consider a processing chain

(16)

The numerator density is usually of a simple form, so it is known
exactly. The denominator density(z| Hy) must be known ex-

actly or approximated carefully so that it is accurate even in

x 1O @) LT (W), (13)

y @ w
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the far tails of the PDF. The saddlepoint approximation (SPAyom a uniform distribution in the [0,100] range. The following
which was described in a recent publication [15], provides a s@sults were produced.

lution for cases when the exact PDF cannot be derived but the log .J function
exact moment-generating function (MGF) is known. The SPA Fixed ref Variable ref error
is known to be accurate in the far tails of the PDF [15]. —5.6586675¢ 4+ 03 —5.658667Te 4+ 03 —0.000 166 666

Example 2: As a very simple example of a fixed-reference_3 559442 1¢ 4+ 03  —3.5594422¢ + 03  —0.000 166 667
module, letx be a time-series, and letbe the power estimate _ 5 998754 9 403 —5.2287544e + 03 —0.000 166 667
N —5.1864650e + 03 —5.1864652¢ + 03 —0.000 166 667

5= i Z 2. —4.969499 2¢ + 03 —4.969499 3¢ + 03 —0.000 166 666

N ot ' —4.1845311e 4+ 03 —4.1845313e+ 03 —0.000166667

—5.6939485¢ + 03 —5.693948 7¢ + 03 —0.000 166 667

For Hy being WGN p..(x|Hy) is quite simple to write, namely —5.656 036 5¢ + 03 —5.656 036 7e + 03 —0.000 166 667
—5.6915408e + 03 —5.6915410e + 03 —0.000 166 667

( $ l,z) ~5.2675655¢ + 03 —5.2675656¢ + 03 —0.000 166 667
log pe (x| Ho) = N log(2r) — =L " 17) There is almost no difference between the approaches (a
* 0 2 2 ' 0.000 16 error in log domain). The error rises/dsdecreases

Clearly, z is a Chi-square RV withv degrees of freedom scaledbecause the CLT approximation worsens.

by 1/N. Thus C. Maximum Likelihood Modules
N N A special case of the variable reference hypothesis approach
logp(z|Ho) = log N — log (F <§>> - (5) log(2) is the ML method, whem is an MLE (see Section II-C)
p(x10)

J(x,T,Hy) =

(2m)=P/2(1()[1/2

To continue Examples 2 and 3, itis known that the ML estimator

for variance is the sample variance which has a Cramér—-Rao

B. Variable Reference Hypothesis Modules (CR) bound ofo%;,, = 20%/N. Applying (12), we get exactly

the same result as the above variable reference approach. When-

ever the feature is also a ML estimate and the asymptotic re-

pe(x|Ho(2)) sults apply (the nur_nber of estimated parametersf is s_maII and

(19) the amount of data is large), the two methods are identical. The

variable reference hypothesis method is more general because

Modules using a variable reference are usually designed to jfgdoes not need to rely on the CLT.
sition the reference hypothesis at the peak of the denomin%or
PDF, which is approximated by the CLT. :
Example 3: We can use the Example 2 and redesign the One-to-one transformations do not change the information
module as a variable reference module. Now, instead of usiggntent of the data, but they are important for feature condi-
referenceH,, we use the reference hypothedig(~) thatx tioning prior to PDF estimation. Recall from Section Il that

+ <% - 1) log(Nz) — % (18)

For a variable reference hypotheses, fhieinction is

J(x,T, Hy(z)) =

One-to-One Transformations

has variance? = z. Thus Theorem 1 is a generalization of the change-of-variables the-
N orem for 1:1 transformations. Thus, for 1:1 transformations, the
( ) x2> J-function reduces to the absolute value of the determinant of
N — n . .
log pa (X| Ho(2)) = — —~ log(2mz) — =1 . (20) the Jacobian matrix (4)
2 (22) J(x,T) = [Ir(x)|

Now, ~ will still be Chi-square, but we can approximate its PDRUr first example is the log transformation that is useful when
by the CLT. Accordingly,z has means2 = z and variance applied to exponential RVs to obtain a more “Gaussian-like”

204 /N = 222/N. Thus distribution.
Example 4—Log Transformationi:et z = log(z). We have
_ 1. [Anz? (z —2)? dy/dx = 1/z; thus,log.J = log(1/z) = —logz = —=z. For
log p(z|Ho(2)) = — 5 log ( N > (=) vector arguments
N
1 472>
2—510g< N > (21) logJ:—;zi.
Notice the complete cancellation of the last term. A very important one-to-one transformation in signal pro-

Let us compare the fixed hypothesis method (17) and (183ssing is the conversion from autocorrelation function (ACF)
with the variable hypothesis method (20) and (21) for the powtr reflection coefficients (RCs) using the Levinson algorithm
feature. We create input datafrom iid samples of Gaussian[16]. RCs tend to be better features since they are less correlated
noise but with a random scaling. The scale factor was chosian ACF estimates.
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Fig. 2. Block diagram of a class-specific classifier.

Example 5—Conversion From ACF to RCketz = T'(r), we implement the classical Neyman—Pearson classifier but with
wherer = [rg,r1...7p] andz = [ro,k1...kp]’, where the class PDFs factored using the PDF projection theorem
{k1...kp} are theP RCs. The Jacobian is

J* = arg max p=(x|Ho,;(z))

o . (2| H;) atz; = Tj(x
ol =7 - k)7 5 e Ho ()= 1) 8020 = 1500
=1

(22)
where we have allowed for class-dependent, data-dependent,
heference hypotheses.

he chain-rule processor (14) is ideally suited to classifier
(r)nodularization. Fig. 2is a block diagram of a class-specific clas-
hier. The packaging of the feature calculation together with the
J-function calculation is called the class-specific module. Each
arm of the classifier is composed of a series of modules called
a “chain.”

Although the RCs are uncorrelated, they are subject to t
limit |%;| < 1, which gives their distribution a discontinuity. To
obtain more Gaussian behavior, the log-bilinear transformati
is recommended (thanks to S. Kay).

Example 6—Log Bilinear Transformatior:et

k! = 108'(17—:) 1<i<P.
og(L + ki) B. Feature Selectivity: Classifying Without Training

We have The.J-function and the feature PDF provide a factorization of
the raw data PDF into trained and untrained components. The
Lid (1—k2) ability of the J-function to provide a “peak” at the “correct”
[Jr| = H 9 feature set gives the classifier a measure of classification per-
=1

formance without needing to train. In fact, it is not uncommon
Additionally, taking the log of the first feature ) results in that th_eJ-function dominates, e_Iir_ninating the r!eed to train at
a further improvement. all. This we call thefez?\ture s_electlvny effedfor a fixed amount o
of raw data, as the dimension of the feature set decreases, indi-
cating a larger rate of data compression, the effect afthenc-

IV. APPLICATION OF THEOREM 1 TO CLASSIFICATION tion compared with the effect of the feature PDF increases. An
example where thé-function dominates is a bank of matched
filter for known signals in noise. If we regard the matched filters

Application of the PDF projection theorem to classificatioms feature extractors and the matched filter outputs as scalar fea-
is simply a matter of substituting (9) into (1). In other wordstures, it may be shown that this method is identical to comparing

A. Classifier Architecture
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only the J-functions. Letz; = |w/x|?, wherew; is a nor- V. EXAMPLE: LINEAR FUNCTIONS OF EXPONENTIAL,
malized signal template such thatw; = 1. Then, under the CHI-SQUARE, OR LOG-EXPONENTIAL RVS
white (independent) Gaussian noise (WGN) assumptioiis
distributedy?(1). It is straightforward to show that th&-func-
tion is a monotonically increasing function ef. Signal wave-

A widely used combination of transformations in signal pro-
cessing is to first apply an orthogonal linear transformation, per-
X L . _ form a squaring operation (or magnitude-squared for complex
_forms_ catr;] bePlr)eIEat;ZIy cl?jssmed #i'ng (t)r?ly _tﬂe_lf_uhnctmn ant;l d_RVs), and then perform a linear transformation. These transfor-
'gnonng I'(ta g J un_derde_??h é/_po esls. ﬁe curs“efo ations include widely used features such as MEL cepstrum
mensionality can be avoided It the dimensiorepls small for 417], polynomial fits to power series and power spectra, auto-

eachy. T.h's po§S|b|I|ty exists, even in cqmplex PTOb'emS' b correlation functions and, through one-to-one transformations,
causez; is required only to have information sufficient to sepa;

. . autoregressive (AR) and reflection coefficients (RC).
rate clasd?; from a specially chosen reference hypothésis;. The general form is the following. Let be anN-by-1 real

or complex vector. Len = U¥x be some real or complex
C. J-Function Verification orthogonal linear transformation such tiaff U = vI. Note

) o o ) thatU does not need to be squarexifs real andu is complex
One thing to keep in mind is that it is of utmost importancgince we omit any redundant elementsiof_etn be the length

that theJ-function is accurate because this will insure that thgs . For the case of DFT of a real vecter= N/2 + 1. Next,
resulting projected PDF is, in fact, a valid PDF. For examplgst y pe the vector whose elements are the magnitude squared

if the .J-function is accidentally scaled by a large positive conit complex) or squared (if real) values of the elementsiof
stant, the classifier will produce false classifications in favor the

the class with the erroneoukfunction. In contrast, it is not ) )

a serious problem, however, if one of the likelihood functions yi = uil”, 0<i<n—1.

p(x|H;) is not a perfect match to the data for cldgsbecause

it will be discovered by trial and error. A better PDF estimatginally, let

can be found simply by comparing the likelihood values for

the given class. Therefore, in the following examples, we are z=Ay (24)
notvery strictabout the sufficiency of the features for the corre-

sponding target class, although their approximate sufficiencwigereA is a realn-by-M matrix.

intuitively apparent. The ultimate justification for using a partic-

ular feature set can be the maximization of the likelihood valugs Two Approaches to Computing thieFunction

calculated on the raw data space usin . . .
P g For the features in (24), there is no closed-form solution to

the J-function, except in some simple cases [15]. There are,
P(x|H;) = J(x, T, Ho)p(z;| Hj). (23) however, two very good approximations discussed in the next
sections. The second method (central limit theorem) will be used
in the subsequent example.
We can compare competing feature sets based on the likelihood) Saddlepoint Approximation MethodEhe saddlepoint ap-
values and can gradually increase the likelihood on the targebximation (SPA) was discussed in a previous publication [15];
class by experimenting with different features and PDF modetkerefore, we will only give an overview here. In the referenced
To verify the “J” function, we have developed an end-to-enghaper, the case of autocorrelation coefficients computed from
test that we call the “Acid Test” because of its foolproof natura real vectorx was discussed. The reference hypothesis used
To use the method, it is first necessary to define a fixed hypottor this approach, which is denoted b, is white (indepen-
esis, which is denoted b¥, for which we can compute the dent) Gaussian noise of zero mean and variance 1. The numer-
PDFp(x|H) readily and for which we can synthesize raw datator PDF of the/-function
Note thatH, is nota reference hypothesis. The synthetic data is
converted into features, and the PPz|H,) is estimated from pe(x|Hp)
the synthetic features (using a Gaussian Mixture PDF, HMM, J(x, T, Ho) = m
or any appropriate statistical model). Next, the theoretical PDF
p(x|Hy) is compared with the projected PDF

(25)

is known exactly, and the denominator PDF is approximated by
the SPA. In extreme cases, this approach can potentially suffer
p(x|H,) = J(x, T, Hy) p(z|H,) from the “tail_ PDF prol_)Iem.” _ _
To appreciate the tail PDF problem, one can imagine that for

a given sample, as we scal by a large positive numbekx
for each sample of synthetic data. The log-PDF values &e that when calculatindg( Kx, T, Hy), we will quickly reach
plotted on each axis, and the results should fall onXhe- Y a point where the-function will be a ratio of two numbers that
line. For each example, we will provide acid test results. Sinege essentially zero and cannot be reliably computed. In prac-
the acid test checks the equality of two entirely different pathtice, we find that if all calculations are made in the log-domain,
it should find any systematic error in PDF estimation or in théhe log-.J function is well-behaved for very large input values.
J-function calculation. There are limits, however, and we find that the SPA, which is a
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recursive search for the saddlepoint itself, will eventually have 1) Features and Region of Sufficienciet y be the length
convergence problems. To alleviate this problem, we use a va¥/2 + 1 vector of magnitude-squared bins of the DFTxof
able reference hypothesis (see Section 1I-B). 1.k a rough
estimate of the variance &f Let H, be the hypothesis that the
input variance equals. AssumingH.,, and H, are in the ROS
of z, (25) is theoretically independent &f,, and thus

Y =[yo.y1---yny2l

where
Pa(X[Ho) _ pa(x[Hy) N 2 N
- ) _ —j2wki/N AV
pz(Z|H0) pz(z|H'u) Y = ;xze J , 0<Ek< 5
However
The ROS ofy is quite broad, encompassing all Gaussian pro-
p-(z|H,) = v"Mp.(v"'2|Hp) cesses with a power spectrum.
2) Reference Hypothesigzor our reference hypothesis for
whereM is the dimension of. Therefore this stage, we usél,, which is the standard normal density
(WGN hypothesis with unit variance).
; Pe(X|Hy) 3) Input PDF: We have

J(x,T, Hy) = v* (26)

p- (2ol Ho) N
pe (x| Ho) = (2m) 2 exp {—% Zw%} @

which provides a convenient way to normalizerior to calcu- e

lating the SPA.

2) CLT Method: The second method that gives us a work- 4) Output PDF: Note that undef,, y is a set of indepen-
able solution is the CLT. We use the chain rule to separately afisnt Rvs. Itis easily shown thag, yn,/> Obey they?(1) density
alyze the two stages: a) orthogonal transformation and squangh meann and variance X2. In addition,y; - - - y /21 obey

and b) linear transformation. We will design a two-module chamex2(2) or exponential density with mea¥i and varianceV?.
for a subset of the autocorrelation function (ACF) estimates. Thg ;5

processing chain necessary to compute the ACF coefficients can
be broken down into two stages:
1) Computey, which are the magnitude-squared FFT bins. py(y|Ho) = H py (yilHo) (28)
2) Computez, which is a subset of the elements of IFFT), =0
which is the real part of the inverse FFT pf where

N/2

. . . . py(yilHo) =
As explained previously, a class-specific classifier can be or- V2T

ganized into “modules”. Each module consist of a feature trans-

formation and & -function calculation. Thd-function requires and

the definition of a reference hypothesis and the calculation of the 1 vi

numerator (input) and denominator (output) PDF. Accordingly,  p,(vi|Ho) = —exp {—i} , 1<i<
we organize this example and those that follow into modules. v v

For each module, we explain the following. andv is the mean of the elements pf(v = N).
1) Features and ROS We describe the feature transforma-

tion z = 7'(x) and the ROS for the features (see Se@. Stage 2: Linear Transformation
tion [I-B). Ideally, the ROS, which is denoted By., in-
cludes the “target class/7; for which this feature set is
designed.

2) Reference HypothesisWe define the reference hypoth-
esisH, used in the/-function. Often, this hypothesis is
a data-dependent reference, which is writtéy(z).

3) Input PDF. We define this as the numerator of the
function.

4) Output PDF. This is the denominator of thé-function.

5) Test Results When appropriate, we present results of the
“acid test” (Section IV-C).

B. Structure of the Examples 1 yi\ ~1/2 Yi _ N
() en {2} =03

Stage 2 of the two-stage CLT approach is discussed here. In
stage 2, we apply a linear transformationytoe use ACF as
an example, but the basic method applies to any linear transfor-
ation.
1) Features and Region of SufficiencWe letz be the first
P + 1 circular ACF samples

N
1
5= Z Tptfpiy) 0<i<P (31)

n=1

_ ) where[n + 7] is taken modula¥. We use the circular ACF esti-
C. Stage 1: DFT Magnitude-Squared mates in this example for simplicity because they may be written
Stage 1 of the two-stage CLT approach is discussed here.in terms ofy, but the.J-function may be found for any variety
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of ACF estimate. The features (31) may be written in terms aential andy? RVs with means corresponding tgZ{}, which

y as follows: are the elements of*. Specifically
-1/2
N/2 . 1 Yi
1 2mks . (Vi Ho(z)) =——— | 2
z; = mZykcos{] i b, 0<i<P (32) Py (il Ho(2)) yi2m <yf>
= x sl —0 N @)
exp 297 1 =0, 5

This has a compact matrix notation

and

z=A'y

1 5 . _ N
py(yilHo(2)) = 7 P {—;j—z} Jl<i<o -1 (39

whereA is the (V/2 + 1)-by-(P + 1) matrix defined by ' '

4) Output PDF: Becausedd((z) is “close” toz, we approx-

N imatep.(z|Ho(z)) by the central limit theorem (CLT). Under
5 1 Hy(z), the elements of are independent with meari and di-

(33) agonal covarianc&;, which are defined by

2 21'/'
Aij:mcos< ;TV“> 0<j<P1<is

1 2mij , , N
Aij:—cos< ) 0<j<Pi=0,—. (34) 2(y7)? _n N
N2 N )7 -7 =7 "2 2%0i.0) 2 E((v: —u? )2 H, — (i)™ 1=0,5
(o) & £y " Mo@) = § (o7 TN
Sincez is the ACF estimates of ordét, the approximate ROS _ )
is all AR processes of orde? and less. We can then easily compute the mean and covariange of
2) Reference HypothesiBBecause we intend to use the CLT ; ..
to approximate the/-function denominator, we need to use a z" = £(z|Ho(z)) = Ay

variable reference hypothesi§(z) such that the mean of
underH,(z) is equal to or close ta itself. There are two pos- and
sible methods. For arbitrary matriceés, this can be done by

projecting the input vector upon the column spaceAofLet 3 =A'SA.
Hy(z) be the hypothesis thgt has mean P+1 1 .
o) tog - (z]Ho()) = — T tog(2m) — L 10g jdet)
v* = A(A’A) 'z, (35) _ %(Z —70.)(3) (2 — 70.)
(P+1) 1 -
Notice thatA’ y* = z, that is, undet(z), the mean of is z — 5 log(2m) — 5 log|de(X))

itself. (39)
One possible problem that can occur igifin (35) happens

to be negative, which is quite possible, but not allowed. A suifghere in the last step, we make the approximatén~ z.

able solution is to use a constrained optimization, that is, choosi§is approximation becomes bettersisbecomes larger. Note

y® such thatitis positive, and’ y* is as close as possibleyo  also that the method just described is closely related to the ML

A more satisfying way to guarantee a positjvein the case approach. In facty: is related to the Fisher’s information of
of ACF is the following. We lett(z) be the hypothesis that the ACF estimates [16].

obeys the AR spectrum correspondingztd hus, we must use
the Levinson algorithm to solve for thBth-order AR coeffi- E. Test Results

cientsog, a. If A(k) is the DFT ofa (padded to lengtV), then T acid test was run on the ACF features using both the SPA
and CLT methods. A model order of 2 was used giving a feature
od dimension of 3 (lags 0 through 2). Results are shown in Figs. 3
GE and 4. A raw data size d¥ = 32 was used with a test hypoth-
esis,H ; of iid Gaussian noise of variance 100. There were 400
samples of synthetic data used for training the feature PDF using
a Gaussian mixture. The results show that both methods “pass”
the test because the estimates of projected PDF (vertical axis)
y* 2 [P*(0)...P? <E>]'. (36) appearto track the theoretical PDF values (horizontal axis). The
2 errors are quite small, considering that these are PDF estimates
of a 32-dimensional PDF. A comparison was made of the dif-
For largeN, we haveA’ y* — z. ference of the log/-function values output by the two methods,
3) Input PDF: We need to evaluate,(y|Ho(z)) and anditwas found thatthe difference was less than 1.0 for all sam-

is the AR spectrum correspondingdoWe let

p-(z|Ho(z)). We assume¢;} are a set of independent expo-ples.
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Acid test for chain ar_2_32

whereM = 12 is a commonly used value. The MEL cepstrum

: equals

gttop e : O e ]

E_”s_.. ‘...vf" e A 7 = DCT(IOg(A/y))

5,120_.. SRR MM i ] . .

& o e o] where the log function operates on each element of its argu-
sk T ... 1 mentandDCTisthe discrete cosine transform. Note that DCT
P : ; : ; ,‘ and log are both 1:1 transformations, whds&nctions are the

-1 -1 T eoretion ogPOF -te 15 determinant of the respective Jacobian matrices. Our primary

concern, then, is to analyze the intermediate feature set

3 T T T T T

T R w = Ay
T which we have previously described in Section V.

T An important warning is that the usual MEL filter bank does

Log—-Projected PDF error

AP I R A 1 notinclude filters centered at the 0-th aig2 (Nyquist) DFT
2 — —= = == = —s  DINS. _T_hese two f?lters need to be in<_:ll_1ded in any class-specific
Theorstical log-FDF classifier; otherwisez will not be sufficient for simple scaling

Fig. 3. Acid test results for autocorrelation function using SPA method. To%peratlons' The proper way to eliminate the features is not to

frame shows the estimate of the feature log-PDF projected to the raw data plo@¢Elude them from the MEL filterbank, but rather to assign a
against the theoretical log-PDF. The bottom frame shows the difference plotigdninformative (such as uniform) PDF to them at the output.
against the theoretical log-PDF. A Gaussian mixture was used to estimate the
feature PDF.

VII. FEATURE SELECTION

Acid test for chain ar_2_32

o8 . J . . One question we have not yet covered is how does one deter-
AT _ S R | mine an appropriate feature set for a data class? Choosing fea-
0 IO A C 7#_".7,_»‘7.55“-‘-'7 ! | turesis r_arely done through s_tatistical ormat_hemgticz_;ll_ analys_is.
73;_120_ S : M* o | _The_ F:hOI_Ce_ of features remains an art requiring mtumon. This
i s g 3 intuition is is helped by the methods of resynthesis and model
3':2‘ B S 1 order/segment size selection discussed below.

_19?35 —I.’;O —1;5 —1;0 —1:5 —11‘0 =105 A SUﬁ:ICIenCy by ResyntheSIS

Theoretical log-PDF - .
In many problems, the ability of a human to classify an event

3 ‘ g ‘ g - exceeds the ability of the machine. Human performance is
g s almost always a lofty goal. It is therefore reasonable to choose

: ‘ R ot ‘ { features that can represent the data with enough fidelity to
1 resynthesize the event to the satisfaction of a human observer.
: St e { For example, the resynthesis of speech data from features has
P I : R ] been used for speech analysis to determine the appropriateness
3 ; i i i ; of speech analysis methods [19]. We recommend this method
-135 -130 -125 -120 -115 -110 -105 .y .
Theoretical log~PDF whenever it is appropriate.

Log-Projected PDF error

Fig. 4. Acid test results for autocorrelation function using CLT method. ToB, Determination of Segmentation and Model Order
frame shows the estimate of the feature log-PDF projected to the raw data plotted

against the theoretical log-PDF. The bottom frame shows the difference plottedONnce a feature set is chosen, it may be possible to fine tune it.
against the theoretical log-PDF. A Gaussian mixture was used to estimate {1gis is particularly true if the feature extraction is governed by
feature PDF. .

a set of parameters such as segment size and model order. Full
implementation of (7a) may be computationally prohibitive un-
less a simplified PDF model is used. The method now presented

An important set of features in speech analysis is cepstrunay be a way to automatically determine these parameters.
[18] and MEL cepstrum [17]. For the cepstrum, the SPA for the In many statistical models, there are two parts to the mod-
denominator PDF of thg-function for fixed WGN reference eling: measurement PDF and spatio-temporal distribution. For
hypothesis is described in [15], so we will not need to discussskample, in an HMM, the state PDFs are measurement PDFs
further. The MEL cepstrum, however, is a member of the setafd the state transition matrix describes the spatio-temporal
transformations in Section V. The MEL cepstrum is computesbmponent of the model. By removing the spatio-temporal part
as follows. Lety be a DFT magnitude-squared vector of lengtbf the model, a simplified model results (just a measurement
N/2 — 1, whereN is the DFT size. The MEL filter bank is a PDF). It may be possible to optimize the feature model order
matrix A of spectral template vectors and segmentation based only on the simplified model. The

optimized features, it is conjectured, would achieve the highest
A =cica...cp] likelihood once the spatio-temporal parts of the model were

VI. EXAMPLE: CEPSTRUM ANDMEL CEPSTRUM
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restored. We have conducted many experiments that supy

this conjecture. sk i
The particulars of the method are now presented. Let the fe
ture data be writtet” = {z},z5...z% }, wherek is a par- o

ticular choice of segment size and/or model order andis
the corresponding total number of observation vectors con

sponding to choicé. Note that we have collected all the avail- -1 e o o o Py o

able data from all events into one mass, forgetting the tempo
or spatial organization, and forgetting which event the obse
vations are from. We also assume taétare low enough in
dimension that a parametric PDF estimator (i.e., Gaussian m
ture) can be estimated from the data. Let the data be divided i@mo
atraining setX,, Z* ) and testing sefX;., Z*.) for cross-val-

idation. Next, we estimate the PDF

~ k 0.05 0.1 0.15 02 025 03
k(Z ) Time (s)

. i . ) . Fig. 5. Example of a typical synthetic event. Time-series (top) and
usingZ¢, for model choicek. The feature PDF is projected tOspectrogram (bottom). Sample rate was 12 500 Hz.

the input data space where it can be compared across different

values ofk. We have TABLE |

RESULTS OFMODEL ORDER/SEGMENT SIZE SELECTION EXPERIMENT. RESULTS
LOG-LIKELIHOODS RELATIVE TO MAXIMUM

L(k) = log J(X, Z*) + Zlogﬁk(zﬁ)
" P| N=32 | N=64 | N=128 | N=256 | N=512

wherelog J(X, Z*) is the aggregatig-.J-function for the data 2 | -7782.6 | -5105.3 | -5027.9 | -8336.7 | -16748.1
set. Next,L(k) is calculated forX:., Z~ ). For added accuracy,

L(k) can also be computed by swappiafl andZ*, and aver- -6500.3 | -2033.2 | -921.5 | -2820.3 | -8650.7

aging. The optimal choice df is that which maximized.(k). 4| 74916 | -1716.7 0.0 -1550.6 | -6672.8
This approach is robust against overparameterization because
as the model order (and dimensionzdf) increases above the 5| -9316.0 | -2127.8 | -119.7 | -1499.8 | -6546.5

optimal value, the ability to estimate the PDF worsens and the

. - - . -11691.5 | -2731.7 | -262.8 | -1540.3 | -6480.7
average of the cross-validated likelihood will begin to fall.

[=}

7 | -16159.1 | -5437.2 | -2169.5 | -3164.1 | -8080.1

C. Example

To test the approach, we first created a synthetic signal C|}?S iven time-series is processed by each class-model to ar-
approximating a “bang” sound. Independent Gaussian noise. P y

passed through a second-order autoregressive filter. The fi 'é(t(’le gt“; éa\é)v-,fjata Iogt- Ilketlr:hooil fo[. the claf?s: E?Ch fblo‘g; la-
output is modulated by an envelope function with an instant ce (P)” computes the reflection coeflicients of ordrer

neous attack and an exponential decay. The attack time is cho%gﬁn the associated time-series segment. The figure shows two

at random. Independent noise is added to the result. An exam%;Pess'mOdels employing different segmentation lengths as well

of a typical synthetic event is shown in Fig. 5. A total of 10 s different model orders. The log-correction tering (-func-
events were created, each with a total length of 4096 samplé%ns) of all the segments are added together and the aggregate

The features were extracted by segmenting the events into Scorrectlon term is added to the HMM log-likelihood (from the

ments of lengthV, whereN ranged from 32 to 512 in powers ofﬁ%%r? prt?]cedlure [20]) to arrive at the final raw data log-like-
2. Autocorrelation features of ordérwere extracted from each ' 00¢ 'OF (€ Class.

segment wheré®> was between 2 and 7. The results are showqursgg t'r?c,ilé)F Egcczklft'gﬁl?opll(z) se: dog aci;”ifsqcf)rﬂgdéjgf;:&
in Table | and show a peak &= 4, N = 128, which is about a P ng uatl wed by conversi

10-ms segment size. This is in agreement with intuition becatfs%dmg with feature conditioning by the log-bilinear transforma-

. : ion. This may be implemented four modules corresponding to
the width of the event envelope near the peak is about 10 mSSections V-C,V-D, and lll-D (Examples 5 and 6). Alternatively,

the SPA approach (see Section V-Al) may be used in place of
the first two modules and will produce virtually identical fea-
TIME-SERIES CLASSIFIER USING REFLECTION COEFFICIENTS tures and/-function values. This classifier has the added benefit
AND HMM that the models may be validated by re-synthesis of time-series
Itis possible to use the material thus-far discussed to arrivefie@m features (either computed from actual data or generated at
a fully modular, extremely versatile class-specific classifier. Aandom by the HMM). Using the method of Section VII-B, the
functional block-diagram of this classifier is provided in Fig. 6segmentation sizes and model orders may be optimized for each

VIII. V ERSATILE GENERAL-PURPOSECLASS-SPECIFIC
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Time-series
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Log-
Model Likelihood

Log-likelihood

Fig. 6. Block diagram of an HMM and RC-based class-specific classifier. A given time-series is processed by each class-model to arrive at a raw-data
log-likelihood for the class. Each block labeled “RC(P)” computes fttike order reflection coefficients from the corresponding time-series segment and is
implemented by a series of modules.
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